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Abstract— We show a new way to round vector
solutions of semidefinite programming (SDP) hierar-
chies into integral solutions, based on a connection
between these hierarchies and the spectrum of the in-
put graph. We demonstrate the utility of our method
by providing a new SDP-hierarchy based algorithm
for constraint satisfaction problems with 2-variable
constraints (2-CSP’s).

More concretely, we show for every 2-CSP in-
stance �, a rounding algorithm for r rounds of
the Lasserre SDP hierarchy for � that obtains an
integral solution which is at most ε worse than the
relaxation’s value (normalized to lie in [0, 1]), as
long as

r > k · rank�θ(�)/ poly(ε) ,
where k is the alphabet size of �, θ = poly(ε/k), and
rank�θ(�) denotes the number of eigenvalues larger
than θ in the normalized adjacency matrix of the
constraint graph of �.

In the case that � is a UniqueGames instance, the
threshold θ is only a polynomial in ε, and is indepen-
dent of the alphabet size. Also in this case, we can
give a non-trivial bound on the number of rounds
for every instance. In particular our result yields
an SDP-hierarchy based algorithm that matches the
performance of the recent subexponential algorithm
of Arora, Barak and Steurer (FOCS 2010) in the
worst case, but runs faster on a natural family of
instances, thus further restricting the set of possible
hard instances for Khot’s Unique Games Conjecture.

Our algorithm actually requires less than the
nO(r) constraints specified by the rth level of the
Lasserre hierarchy, and in some cases r rounds of
our program can be evaluated in time 2O(r) poly(n).

1. Introduction

This paper is concerned with hierarchies
of semi-definite programs (SDP’s). Semidef-
inite programs are an extremely useful tool
in algorithms and in particular approximation
algorithms (e.g., [15], [18]). Approximation
algorithms based on SDP’s typically involve
finding an integral (say 0/1) solution for some
optimization problem, by using convex pro-
gramming to find a fractional/high-dimensional
solution and then rounding it into an integral
solution. Sherali and Adams [34], Lovász and
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Schrijver [28], and, later Lasserre [26], pro-
posed systematic techniques, known as hierar-
chies, to make this convex relaxation tighter,
thus ensuring that the fractional solution is
closer to an integral one. These hierarchies are
parameterized by a number r, called the level
or number of rounds of the hierarchy. Given
a program on n variables, optimizing over the
rth level of the hierarchy can be done in time
nO(r). The gap between integral and fractional
solutions decreases with r, and reaches zero
at the nth level. The paper [27] surveys and
compares the different hierarchies proposed in
the literature, (see recent survey [10]).

These semidefinite programming hierarchies
have been of some interest in recent years,
since they provide natural candidate algorithms
for many computational problems. In particu-
lar, whenever the basic semidefinite or linear
program provides a suboptimal approximation
factor, it makes sense to ask how many rounds
of the hierarchy are required to significantly
improve upon this factor. Unfortunately, taking
advantage of these hierarchies has often been
difficult, and while some algorithms (e.g., [5])
can be encapsulated in, say, level 3 or 4 of
some hierarchies, there have been relatively
few results (e.g. [9], [8]) that use higher levels
to obtain new algorithmic results. In fact, there
has been more success in showing that high
levels of hierarchies do not help for many com-
putational problems [3], [33], [14], [31], [22].
In particular for 3SAT and several other NP-
hard problems, it is known that it takes Ω(n)
rounds of the strongest SDP hierarchy (i.e.,
Lasserre) to improve upon the approximation
ratio achieved by the basic SDP (or sometimes
even simpler algorithms) [32], [36].

Semidefinite hierarchies are of particular in-
terest in the case of problems related to Khot’s
Unique Games Conjecture (UGC) [19]. Several
works have shown that for a wide variety
of problems, the UGC implies that (unless
P = NP) the basic semidefinite program cannot
be improved upon by any polynomial-time
algorithm [20], [29], [30]. Thus in particular



the UGC predicts that for all these problems, it
will require a super-constant (and in fact poly-
nomial, under widely believed assumptions)
number of hierarchy rounds to improve upon
the basic SDP. Investigating this prediction,
particularly for the Unique Games problem it-
self and other related problems such as Max
Cut, Sparsest Cut and Small-Set Expansion,
has been the focus of several works, and it is
known that at least (log log n)Ω(1) rounds are
required for a non-trivial approximation by a
natural (though not strongest possible) SDP
hierarchy [31], [22]. However, no non-trivial
upper bound was known prior to the current
work, and so it was conceivable that these
lower bounds can be improved to Ω(n).

Recently, Arora, Barak and Steurer [2] gave
a 2npoly(ε)

-time algorithm for solving the Unique
Games and Small-Set Expansion problems
(where ε is the completeness parameter, see
below). However, their algorithm did not use
semidefinite programming hierarchies, and so
does not immediately imply an upper bound on
the number of rounds needed.

1.1. Our results

Our main contribution is a new method to
analyze and round SDP hierarchies. The high
level description is that it uses global correla-
tions inside the high-dimensional SDP solution,
combined with the hierarchy constraints, to
obtain a better rounding of this solution into
an integral one. We believe this method can be
of general utility, and in particular we use it
here to give new algorithms for approximating
constraint satisfaction problem on two-variable
constraints (2-CSP’s), that run faster than the
previously known algorithms for a natural fam-
ily of instances. To state our results we need
the notion of a threshold rank. Threshold rank

of graphs and 2-CSPs. The τ-threshold rank
of a regular graph G, denoted rank�τ(G), is
the number of eigenvalues of the normalized
adjacency matrix of G that are larger than τ.1

An instance � of a Max 2-Csp problem consists
of a regular graph G�, known as the constraint

1In this paper we only consider regular undirected
graphs, although we allow non-negative weights and/or
parallel edges. Every such graph can be identified with
its normalized adjacency matrix, whose (i, j)th entry is
proportional to the weight of the edge (i, j), with all row
and column sums equalling one. Similarly, we restrict our
attentions to 2-CSP’s whose constraint graphs are regular.
However, our definitions and results can be appropriately
generalized for non-regular graphs and 2-CSPs as well.

graph of � over a vertex set [n], where every
edge (i, j) in the graph is labeled with a relation
Πi, j ⊆ [k]× [k] (k is known as the alphabet size
of �). The value of an assignment x ∈ [k]n to
the variables of �, denoted val�(x), is equal
to the probability that (xi, x j) ∈ Πi, j where
(i, j) is a random edge in G�. The objective
value of � is the maximum val�(x) over all
assignments x. We say that � is c-satisfiable
if �’s objective value is at least c. We define
rank�τ(�) = rank�τ(G�). Our main result is,

Theorem 1.1. There is a constant c such that
for every ε > 0, and every Max 2-Csp instance
� with objective value v, alphabet size k the
following holds: the objective value sdpopt(�)
of the r-round Lasserre hierarchy for r � k ·
rank�τ(�)/εc is within ε of the objective value
v of �, i.e., sdpopt(�) � v+ ε. Moreover, there
exists a polynomial time rounding scheme that
finds an assignment x satisfying val�(x) > v−ε
given an optimal SDP solution as input.

Results for Unique Games constraints.
We obtain quantitatively stronger results for

the important special case of Max 2-Csp, the
Unique Games problem. A Max 2-Csp instance
is a Unique Games instance if all the relations
Πi, j have the form (a, b) ∈ Πi, j iff a = πi, j(b)
where πi, j is a permutation of [k]. First, we
show that for Unique Games instances the
threshold τ in Theorem 1.1 does not need to
depend on the alphabet size. Namely, we prove
the following.

Theorem 1.2. There is an algorithm, based
on rounding r rounds of the Lasserre hierarchy
and a constant c, such that for every ε > 0 and
input Unique Games instance � with objective
value v, alphabet size k, satisfying rank�τ(�) �
εcr/k, where τ = εc, the algorithm outputs an
assignment x satisfying val�(x) > v − ε.

The Unique Games Conjecture concerns the
approximability of the Unique Games problem
in a specific regime, namely, given a Unique
Games instance with optimal value 1 − ε, the
goal is to find an assignment with value at least
1/2. We also show that a sublinear number of
rounds suffice to get such an approximation
in the worst case, regardless of the threshold
rank of the instance. Moreover, we also show
that such an approximation can be obtained
in a number of rounds that depends on the
τ-threshold rank for τ that is close to 1 (as
opposed to the small value of τ needed for



Theorems 1.1 and 1.2).

Theorem 1.3. There is an algorithm, based
on rounding r rounds of the Lasserre hier-
archy and a constant c, such that for every
ε > 0 and input Unique Games instance �
with objective value 1 − ε and alphabet size k,
satisfying r � ck ·min{ncε1/3 , rank�1−cε(�)}, the
algorithm outputs an assignment x satisfying
val�(x) > 1/2.

Examples of graphs with small threshold
rank. Many interesting graph families have
small τ-threshold rank for some small constant
τ. Random degree d graphs have τ-threshold
equal to 1 for any τ > c/

√
d for an absolute

constant c. More generally, the class of small-
set expanders – graphs where the expansion
of small subsets of vertices is lower-bounded
– also have small threshold rank. For instance,
if every set of size o(n) expands by at least
poly(ε) in a graph G, then rank1−ε(G) is at
most npoly(ε) [2]. Generalizing this result, [35]
showed that if in a graph G every set of size
o(n) vertices has near-perfect expansion, then
it implies upper bounds on rankτ(G) for τ close
to 0.

Also, as noted in [2], hypercontractive
graphs (i.e., graphs whose 2 to 4 operator
norm is bounded) have at most polylogarithmic
τ-threshold rank for every constant τ > 0.
For several 2-CSP’s such as Max Cut, Unique
Games, Small-Set Expansion, Sparsest Cut,
the constraint graphs for the canonical “prob-
lematic instances” (i.e., integrality gap exam-
ples [12], [23], [22], [31]) are all hypercontrac-
tive, since they are based on either the noisy
Gaussian graph or noisy Boolean cube.

Hard instances for our algorithms are
graphs with a large threshold rank. For the
Unique Games and Max Cut problems it is triv-
ial to construct instances with large threshold
rank by taking many disjoint copies of the
same instance. For other 2-CSPs such as La-
bel Cover, several natural hard instances have
linear threshold-rank. For example, the natural
“clause vs. variable” or “clause vs. clause”
2-CSPs obtained from random instances of
3SAT have linear threshold rank. This is not
surprising since a non-trivial approximation
for random 3SAT requires Ω(n) levels of the
Lasserre hierarchy [32].

However, for the Small-Set Expansion prob-
lem all the existing constructions are based on
the noisy boolean cube or the noisy Gaussian

graph, and hence have only polylogarithmic
threshold rank. A subsequent work addressing
this issue, exhibits small set expanders with
almost-polynomial threshold rank [6].

Algorithm efficiency. Our algorithm actually
does not require the full power of the Lasserre
hierarchy. First, we can use the relaxed variant
with approximate constraints studied in [22],
[31], [21]. Second, the proof of Theorem 1.3
can be carried out without utilizing the con-
straints on all

(
n
r

)
r-sized subsets of n variables,

but rather just sufficiently many random sets.
As a result, our r-round algorithm can be
implemented in time 2O(r) poly(n). Due to lack
of space, the details of this improvement are
deferred to the full version [7].

1.2. Related works

Subspace enumeration algorithms. For
Unique Games and related problems,
previous works [25], [24], [2] used subspace
enumeration to give algorithms with similar
running time to Theorem 1.3 on instances
where the threshold rank of the label extended
graph is small. This is known to be a stricter
requirement on the instances than bounding
the threshold rank of the constraint graph. The
only known bound on the 1− ε threshold rank
of the label extended graph in terms of the
1 − ε threshold rank of the constraint graph
loses a factor of about nε [2]. These subspace
enumeration algorithms are applicable only to
nearly satisfiable instances (whose objective
value is close to 1), and therefore do not
yield guarantees comparable to Theorems 1.1
and 1.2. Moreover, SDP-based algorithms
are more robust and malleable than spectral
techniques. For instance, it is easy to see
that SDP hierarchies yield polynomial-time
approximation scheme for 2CSPs whose
constraint graphs are bounded tree width
graphs or regular planar graphs (or more
generally any hyperfinite family of graphs,
see e.g. [17] and the references therein),
although these classes of graphs could have
high threshold degree.

Approximation schemes for (pseudo) dense
CSP’s. Previously, polynomial-time approxi-
mation schemes have been designed for gen-
eral 2CSP’s on dense and pseudo-dense in-
stances [13], [1], [11]. This work generalizes
these results, since pseudo-density is a stricter
condition than having a constraint graph of



low threshold rank. Furthermore, for an ε-
approximation, these polynomial time approx-
imation schemes require the degree of the
instance to be exponential in 1

ε
, while our

results hold even on random graphs of degree
poly(1/ε).

Analyzing SDP hierarchy. Using very differ-
ent techniques, Chlamtac [9] and Bhaskara et
al [8] gave LP/SDP-hierarchy based algorithms
for graph coloring and the densest subgraph
problem respectively. As mentioned above, sev-
eral works gave lower bounds for LP/SDP
hierarchies. In particular [31], [22] showed that
approximation such as those achieved in The-
orem 1.3 for Unique Games problem require
log logΩ(1) n rounds of a relaxed variant of the
Lasserre hierarchy. This relaxed variant cap-
tures our hierarchy as well. Schoenebeck [32]
proved that achieving a non-trivial approx-
imation for 3SAT on random instances re-
quires Ω(n) rounds in the Lasserre hierarchy,
while Tulsiani [36] showed that Lasserre lower
bounds are preserved under common types of
NP-hardness reductions.

In a concurrent and independent work, Gu-
ruswami and Sinop [16] obtained very similar
results as this work. Using the Lasserre hier-
archy, they obtain an approximation scheme
with similar performance guarantees as the
one in Theorem 1.1 for 2-CSPs, and in fact
even consider generalizations involving addi-
tional (approximate) global linear constraints.
Moreover, they obtain essentially the same
results as Theorem 1.3 for the case of Unique
Games. Furthermore, the rounding scheme in
[16] is identical to ours. However, there are
several differences both in results and the proof.
First, although Guruswami and Sinop [16] use
a notion similar to local-to-global correlation
used here, they formalize it differently, and
interestingly relate it to the problem of column
selection for low rank approximations of matri-
ces. Also, apart from the special case of unique
constraints, [16] use a bound on the threshold
rank of the label extended graph, as opposed to
the constraint graph. The analysis in [16] relies
on the full power of the Lasserre hierarchy,
whereas we show that a weaker hierarchy is
sufficient in the case of Unique Games, and
it can be implemented more efficiently (i.e.,
exp(r) poly(n) vs nO(r)).

2. Preliminaries

We will use capital letters X,Y to denote
random variables, and lower-case letters to
denote assignments to these random variables.
CP(X) denotes the collision probability of a
random variable. For a random variable X and
an element a in its domain, Xa will denote the
indicator variable that equals 1 if X = a and
equals 0 otherwise. For a random variable X
with range [k], we define the variance of X as
Var[X]

def
=

∑
a∈[k] Var[X1a] = 1 − CP(X), where

CP(X) denotes the collision probability of X.

Unique games. An instance of Unique
Games consists of a graph G = (V, E), a
label set [k] = {1, . . . , k} and a bijection
πi j : [k] → [k] for every edge (i, j) ∈ E.
A labelling � : V → [k] is said to satisfy
an edge (i, j) if πi j(�(i)) = �( j). The goal
is to find a labeling � : V → [k] that satis-
fies the maximum number of edges namely,
maximize �(i, j)∈E

{
πi j(�(i)) = �( j)

}
Local distributions.. Let V = [n] be a set

of vertices and let [k] be a set of labels. An
m-local distribution is a distribution μT over
the set of assignments [k]T of the vertices
of some set T ⊆ V of size at most m + 2.
(The choice of m + 2 is immaterial but will
be convenient later on.) A collection of m-
local distributions {μT }T⊆V, |T |�m+2 is consistent
if for all T,T ′ ⊆ V with |T |, |T ′| � m + 2, the
distributions μT and μT ′ are consistent on their
intersection T ∩ T ′. We sometimes will view
these distributions as random variables, hence
writing X(T )

i for the random variable over [k]
that is distributed according to the label that
μT∪{i} assigns to i, and refer to a collection
X1, . . . , Xn of m-local random variables. How-
ever, we stress that these are not necessarily
jointly distributed random variables, but rather
for any subset of at most m + 2 of them, one
can find a sample space on which they are
jointly distributed. For succinctness, we omit
the superscript for variables Xi

(S ) whenever it
is clear from the context. For example, we will
use {Xi | XS } is short for the random variable
obtained by conditioning X(S∪{i})

i on the vari-
ables {X(S∪{i})

j } j∈S ;2 and use �
{
Xi = Xj | XS

}
is short for the [0, 1]-valued random variable
�

{
X(S∪{i, j})

i = X(S∪{i, j})
j | X(S∪{i, j})

S

}
.

2Strictly speaking, the range of the random variable {Xi |
XS } are random variables with range [k]. For every possible
value xS for XS , one obtains a [k]-valued random variable
{Xi | XS = xS }.



Lasserre hierarchy. Let U be a Unique
Games instance with constraint graph G =

(V, E), label set [k] = {1, . . . , k}, and bisections
{πi j}i j∈E . An m-round Lasserre solution con-
sists of m-local random variables X1, . . . , Xn

and vectors vS ,α for all vertex sets S ⊆ V
with |S | � m + 2 and all local assignments
α ∈ [k]S . A Lasserre solution is feasible if
the local random variables are consistent with
the vectors, in the sense that for all S ,T ⊆ V
and α ∈ [k]S , β ∈ [k]T with |S ∪ T | � m + 2,
we have 〈vS ,α, vT,β〉 = � {XS = α, XT = β} .The
objective is to maximize the following expres-
sion �i j∈E �

{
Xj = πi j(Xi)

}
.An important con-

sequence of the existence of the vectors vS ,α
is that for every set S ⊆ V with |S | � m
and local assignment xS ∈ [k]S , the matrix{
Cov(Xia, Xjb | XS = xS )

}
i, j∈V, a,b∈[k] is positive

semidefinite.

3. Warmup – MaxCut Example

For the sake of exposition, we first present
an algorithm for the Max Cut problem on low-
rank graphs. In the MaxCut problem, the input
consists of a graph G = (V, E) and the goal is
to find a cut S ∪ S̄ = V of the vertices that
maximizes the number of edges crossing, i.e.,
maximizes |E(S , S̄ )|.

The Goemans-Williamson SDP relaxation
for the problem assigns a unit vector vi for
every vertex i ∈ V , so as to maximize the
average squared length Ei, j∈E‖vi − v j‖2 of the
edges. Formally, the SDP relaxation is given
by,

maximize �
i, j∈E

‖vi−v j‖2 subject to ‖vi‖2 = 1 ∀i ∈ V

Stronger SDP relaxations produced by hier-
archies such as Sherali-Adams and Lasserre
hierarchy also yield probability distributions
over local assignments. More precisely, given
a m-round Lasserre SDP solution, it can be
associated with a set of m-local random vari-
ables X1, . . . , Xn taking values in {−1, 1}. For an
edge (i, j), its contribution to the SDP objective
value (‖vi−v j‖2) is equal to the probability that
the edge (i, j) is cut under the distribution of
local assignments μi j, namely, �μi j[Xi � Xj] =
‖vi − v j‖2 . Consequently, in order to obtain
a cut with value close to the SDP objective,
it is sufficient to jointly sample X1, . . . , Xn,
such that on every edge (i, j) the distribution
of Xi and Xj is close to the corresponding
local distribution μi j. However, the variables

X1, . . . , Xn are not jointly distributed, and hence
cannot all be sampled together.

As a first attempt, let us suppose we sam-
ple each Xi independently from its associated
marginal μi. If on most edges (i, j), the dis-
tribution of the resulting samples Xi, Xj is
close to μi j, then we are done. On an edge
(i, j), the local distribution μi j is far from the
independent sampling distribution μi × μ j only
if the random variables Xi, Xj are correlated.
Henceforth, these correlations across the edges
would be refered to as “local correlations".
A natural measure for correlations that we
will utilize here is defined as Cov(Xi, Xj) =

�[XiXj]−�[Xi]�[Xj]. Using this measure, the
statistical distance between independent sam-
pling (μi × μ j) and correlated sampling (μi j) is
given by

‖μi j − μi × μ j‖1 � |Cov(Xi, Xj)| . (3.1)

(See Lemma 5.3 for a more general version of
the above bound).

Proof: Under the distribution {XiXj}, the
event {Xi = a, Xj = b} has probability �(a −
Xi)(b − Xj)/4. On the other hand, under the
product distribution {Xi}{Xj}, this event has
probability �(a − Xi)�(b − Xj)/4. Hence, the
difference of these probabilities is equal to
1
4 (� XiXj − � Xi � Xj) = |Cov(Xi, Xj)|/4. Sum-
ming up over the four different assignments
yields the desired bound.

On the flip side, the existence of correlations
makes the problem of sampling X1, . . . , Xn

easier! If two variables Xi, Xj are correlated,
then sampling/fixing the value of Xi reduces the
uncertainty in the value of Xj. More precisely,
conditioning on the value of Xi reduces the
variance of Xj as shown below:

�
{Xi}

Var[Xj|Xi] = Var[Xj]− 1
Var[Xi]

[
Cov(Xi, Xj)

]2
.

(3.2)
Proof: Set A = Xi−� Xi and B = Xj−� Xj.

The random variables A, B have expectation
zero, and have the same variance and covari-
ance as Xi, Xj. Set B̃ = B/(�[B2])1/2.

The set of random variables {1, B̃} is an
orthonormal basis for the subspace of functions
of B. Let ρ = � AB̃. Then, ρB̃ is the orthogonal
projection of A to the subspace of functions
of B. (Here, we use the assumption � A = 0.)
Hence, using the previous lemma,

�
{B}

Var[A | B] = � A2 − �(ρB̃)2 = � A2 − ρ2 ,



which is the desired identity because � A2 =

Var A and ρ2 = Cov(A, B)2/Var B.
Therefore, if we pick an i ∈ V at random

and fix its value then the expected decrease in
the variance of all the other variables is given
by,

�
i∈V,{Xi}

[
�
j∈V

Var[Xj|Xi]

]
− �

j∈V
Var[Xj]

= �
i, j∈V

Cov(Xi, Xj)
2 · 1

2

(
1

Var[Xi]
+

1
Var[Xj]

)
.

The above bound is proven in a more general
setting in Lemma 5.4. As all random variables
involved have variance at most 1, we can
rewrite the above expression as,

�
i∈V,{Xi}

[
�
j∈V

Var[Xj|Xi]

]
− �

j∈V
Var[Xj]

� �
i, j∈V

|Cov(Xi, Xj)|2 .
The decrease in the variance is directly related
to the global correlations between random
pairs of vertices i, j ∈ V .

Recall that, the failure of independent sam-
pling yields a lower bound on the aver-
age local correlations on the edges namely,
Ei, j∈E |Cov(Xi, Xj)|. The crucial observation is
that if the graph G is a good expander in
a suitable sense, then these local correlations
translate in to non-negligible global correla-
tions. Formally, we show the following (in
Section 4):

Lemma 3.1. Let 𝒗1, . . . ,𝒗n be vectors in the
unit ball. Suppose that the vectors are corre-
lated across the edges of a regular n-vertex
graph G,

�
i j∼G

〈𝒗i,𝒗 j〉 � ρ .
Then, the global correlation of the vectors is
lower bounded by

�
i, j∈V

|〈𝒗i,𝒗 j〉| � Ω(ρ)/rank�Ω(ρ)(G) .

where rank�ρ(G) is the number of eigenvalues
of adjacency matrix of G that are larger than
ρ.

As random variables Xi arise from the solu-
tion to a SDP, the matrix

(
Cov(Xi, Xj)

)
i, j∈V

is
positive semidefinite, i.e., there exists vectors
ui such that 〈ui, u j〉 = Cov(Xi, Xj) ∀i, j ∈ V . Let
us consider the vectors vi = u⊗2i . Suppose the
local correlation �i, j∈E |Cov(Xi, Xj)| is at least
ε then we have,

�
i, j∈E

〈vi, v j〉 = �
i, j∈E

|Cov(Xi, Xj)|2 � ε2 ,

and �i[‖vi‖2] � 1. If the graph G is low-rank,
then by Lemma 3.1 we get a lower bound on
the global correlation of the vectors vi, namely

�
i, j∈V

|Cov(Xi, Xj)|2 = �
i, j∈V

〈vi, v j〉 � Ω(ε2)/rank�ε2 (G) .

Summarizing, if the independent sampling
is on average ε-far from correlated sampling
over the edges, then conditioning on the value
of a random vertex i ∈ V reduces the average
variance by ε2/rank�ε2 (G) in expectation. The
same argument can now be applied on the
variables obtained after conditioning on i. In
fact, starting with an SDP solution to m-round
Lasserre hierarchy, the local distributions re-
main consistent and their covariance matrices
remain semidefinite as long as we condition on
at most m − 2 vertices. Observe that average
variance is at most 1. Hence, after at most
rank�ε2 (G)/ε2 steps, the independent sampling
distribution will be within average distance ε
from the correlated sampling on the edges.

The rounding scheme will iteratively con-
dition the SDP solution on the value of a
vertex for at most rank�ε2 (G)/ε2 iterations. In
each iteration, a uniformly randomly chosen
vertex Xi is fixed to a value sampled from its
corresponding marginal distribution. When the
global correlation is less than ε after condition-
ing, the algorithm just rounds the solution by
independent sampling, and outputs the assign-
ment.

Rounding SDP’s using a small basis. There
is an alternate way to view the above rounding
scheme. Note that in the case that the vectors
v1, . . . , vn are one dimensional unit vectors (i.e.,
vi ∈ {±1}), V exactly corresponds to a cut in
the graph, and the objective value measures the
fraction of edges cut. Now, suppose that you
could find r vectors vi1 , . . . , vir ∈ V, whom
we’ll call the basis vectors, such that every
other v ∈ V has some significant projection
ρ into the span of vi1 , . . . , vir . That is, if we let
P be the projection operator corresponding to
this space, then for every v ∈ V , ‖Pv‖2 � ρ.
It turns out that in this case, if ρ is suffi-
ciently close to 1 and the vector solution V
satisfied r + 2 rounds of an appropriate SDP
hierarchy, then we can round V to achieve a
very good cut. The intuition behind this is the
following: the constraints of r + 2 hierarchy
rounds allow us to essentially assume without
loss of generality that the vectors vi1 , . . . , vir
are one-dimensional. That is, after applying an
appropriate rotation, we can think of each one



of them as a vector of the form (±1, 0, . . . , 0).
Moreover, our assumption implies that every
other vector in v has a magnitude of at least ρ
in its first coordinate. Now one can show that
simply rounding each vector to the sign of its
first coordinate will result in a ±1 assignment
to the vertices corresponding to a good cut.

Hence, the problem of rounding reduces to
finding a small basis of vectors vi1 , . . . , vir , such
that the SDP solution has a significant projec-
tion or lies almost completely in their span.
Again, if the local correlation on the edges
�i∼ j〈vi, v j〉2 is tiny, then independent sam-
pling yields a good assignment. Otherwise by
Lemma 3.1, the global correlation �i, j〈vi, v j〉2
is non-negligible (Ω(ε2)/rank�ε2 (G)). In partic-
ular, there exists at least one vector vi1 such
that � j〈vi1 , v j〉2 � Ω(ε2)/rank�ε2 (G). We can
now replace each vector v ∈ V with its
projection into the orthogonal space to vi1 and
continue. Eventually, either the local correla-
tion becomes negligible making independent
sampling a good rounding, or we find a basis
vi1 , . . . , vir such that (almost all) vectors v ∈ V
have most of their mass in Span{vi1 , . . . , vir },
in which case we can successfully round the
solution.

Threshold rank vs global correlation. When-
ever the graph has small number of large
eigenvalues, the condition that local correlation
implies global correlation holds. This is useful
to simulate eigenspace enumeration algorithms
such as used by [25], [24], [2], [35] since
in the case of Unique Games (and other re-
lated problems), a good SDP solution must
be locally well correlated. But the notion of
local to global correlation is somewhat more
general and robust than having small threshold
rank. For example, adding

√
n isolated vertices

to a graph will increase correspondingly the
number of eigenvectors with value 1, but will
actually not change by much the local to global
correlation. This captures to a certain extent the
fact that SDP-based solutions are more robust
than the spectral based algorithms. (A similar
example of this phenomenon is that adding a
tiny bipartite disjoint graph to the input graph
makes the smallest eigenvalue become −1, but
does not change by much the value of the
Goemans-Williamson SDP.) We hope that this
robustness of the SDP-based approach will
enable further improvements in the future.

4. Local Correlation implies Global
Correlation in Low-Rank Graphs

In this section, we present the crucial ingredi-
ent for our algorithm – the translation of local-
correlations to non-trivial global correlations
(Lemma 3.1) in expanders and more generally
low-rank graphs. Let G be a regular graph with
vertex set V = {1, . . . , n}. We identify G with
its normalized adjacency matrix, a symmetric
stochastic matrix. Let λ1 � . . . � λn ∈ [−1, 1]
be the eigenvalues of G in non-increasing or-
der.

The following lemma shows that a violation
of the local vs global correlation condition
implies that the graph has high threshold rank.

Lemma 4.1. Suppose there exist vectors
v1, . . . , vn ∈ �n such that

�
i j∼G

〈vi, v j〉 � 1 − ε , �
i, j∈V

〈vi, v j〉2 � 1
m ,

�
i∈V
‖vi‖2 = 1 .

Then for all C > 1, λ(1−1/C)m � 1 − C · ε. In
particular, λm/2 > 1 − 2ε.

Proof: Let X = (xr,s)r,s∈[n] be the Gram ma-
trix (〈𝒗i,𝒗 j〉)i, j∈V represented in the eigenbasis
of G, so that

�
i j∼G

〈vi, v j〉 =
∑
r∈[n]
λr xr,r , �

i, j∈V
〈vi, v j〉2 =

∑
r,s∈[n]

x2r,s ,

�
i∈V
‖vi‖2 =

∑
r∈[n]

xr,r .

Let m′ be the largest index such that λm′ �
1 − C · ε. Notice that the numbers p1 =

x1,1, . . . , pn = xn,n form a probability distri-
bution over r ∈ [n]. Let q =

∑m′
i=1 pi be the

probability of the event r � m′. Using Cauchy–
Schwarz, we can bound this probability in
terms of m, q =

∑m′
r=1 pr � m′ ∑n

r=1 p2
r �

m′
m . On

the other hand, we can bound the expectation
of λr with respect to the probability distribution
(p1, . . . ,n ) in terms of this probability q,

1 − ε �
n∑

r=1

λr pr �
m′∑

r=1

pr + (1 −C · ε)
m∑

r=m′+1

pr

= 1 − (1 − q)C · ε � 1 −
(
1 − m′

m

)
C · ε .

It follows that m′ � (1 − 1/C) · m, which gives
the desired conclusion that G has at least
(1 − 1/C) · m eigenvalues λr � −C · ε.

Note that Lemma 3.1 follows directly
from the previous lemma by picking C =



(1−ρ/100)
(1−ρ) and observing that �i, j∈V |〈𝒗i,𝒗 j〉| �
�i, j∈V |〈𝒗i,𝒗 j〉|2 since |〈𝒗i,𝒗 j〉| � 1 for all
i, j ∈ V . A weaker converse for Lemma 3.1
is also true (see full version [7]).

5. General 2-CSP on Low Rank Graphs

Let � be a (general) Max 2-Csp instance
with variable set V = [n] and label set [k].
(We represent � as a distribution over triples
(i, j,Π), where i, j ∈ V and Π ⊆ [k] × [k] is
an arbitrary binary predicate. The goal is to
find an assignment x ∈ [k]V that maximizes
the probability �(i, j,Π)∼�

{
(xi, x j) ∈ Π

}
.)

For simplicity,3 we will assume that the
constraint graph of � is regular, i.e., every
variable i ∈ V appears in the same number
of constraints. (Since we allow the constraints
to be weighted, the precise condition is that
the total weight of the constraints incident to a
vertex is the same for every vertex.)

The Lasserre program for � gives rise to m-
local random variables X1, . . . , Xn with range
[k]. We write Xia to denote the {0, 1}-indicator
of the event Xi = a. Notice that {Xia}i∈V, a∈[k] are
also m-local random variables.

The rounding algorithm and its analysis are
a somewhat straight-forward generalization of
the algorithm for MaxCut described in Sec-
tion 3.

Algorithm 5.1 (Propagation Sampling).
Input: r-local random variables X1, . . . , Xn

over [k]
Output:(global) distribution over assign-

ments x ∈ [k]V .

1) Choose m ∈ {1, . . . , r} at random.
2) Sample a random set of “seed vertices”

S ∈ Vm. (Repeated vertices are allowed.)
3) Sample a assignment xS ∈ [k]S for S

according to its local distribution {XS }.
4) For every other vertex i ∈ V \ S , sample

a label xi ∈ [k] according to the local
distribution for S ∪ {i} conditioned on
the assignment xS for S .

Our main Theorem of this section, which
immediately implies Theorem 1.1, is the fol-
lowing:

Theorem 5.2. Let ε > 0 and r = O(k) ·
rank�Ω(ε/k)2 (G)/ε4. Suppose that the r-round
Lasserre value of the Max 2-Csp instance � is

3If the constraint graph is not regular, all of our results
still hold for an appropriate definition of threshold rank.

σ. Then, given an optimal r-round Lasserre so-
lution, Algorithm 5.1 (Propagation Sampling)
outputs an assignment with expected value at
least σ − ε for � .

The proof of the theorem follows the general
outline in Section 3. Specifically, show that as
long as for a random pair (i, j) of indices there
is noticeable correlation between Xi and Xj,
conditioning on Xi “makes progress” and re-
duces the global variance of the system, while
once there is no correlation between almost all
pairs (i, j) involved in constraints, then we may
as well use independent rounding to come up
with a solution. The fact that the graph has low
rank, allows us to pass between correlations for
a random pair (i, j), and correlations for a ran-
dom pair (i, j) that is involved in a constraint.

To implement this approach, we need to
formalize the appropriate measures of correla-
tion, and show an equivalence between them.
One measure is the statistical distance between
correlated and independent sampling of two
variables Xi, Xj. If this measure is low on the
edges of the constraint graph, then an indepen-
dent sampling of the variables would give a
good assignment. As in (3.1), we relate this
measure to the covariances of the correspond-
ing variables {Xia}, {Xjb}.
Lemma 5.3. ] Let Xi and Xj be the two
random variables over [k] from the Lasserre
solution, then∥∥∥{XiXj} − {Xi}{Xj}

∥∥∥
1
=

∑
(a,b)∈[k]2

∣∣∣Cov(Xia, Xjb)
∣∣∣ .

where the left-hand side denotes the �1 (i.e.
total variation) distance between the joint dis-
tribution of Xi and Xj and the distribution when
they are sampled independently.

We omit the (easy) proof from this extended
abstract. Next, we lower-bound the decrease
in variance during the conditioning process in
terms of the covariances (analogue of (3.2)).

Lemma 5.4. For any two vertices i, j ∈ V,

Var Xi − �{Xj}
Var

[
Xi

∣∣∣ Xj

]
�

1
k

∑
a,b∈[k]

�
{XiaX jb}

Cov(Xia, Xjb)
2/Var Xjb

We defer the easy proof to the full ver-
sion [7]. We now have two natural measures
of correlation between Xi and Xj— one is
the statistical distance between sampling Xi, Xj



jointly and independently, and the other is the
amount the variance of Xi decreases after con-
ditioning on Xj, with both ways relating to the
covariances of Xia and Xib. By using convexity
arguments it can be shown that, in our case
where the local random variables come from
a semidefinite program, both notions can be
approximated by inner products of vectors:

Lemma 5.5. Suppose that the matrix(
Cov(Xia, Xjb)

)
i∈V, a∈[k] is positive semidefinite.

Then, there exists vectors 𝒗1, . . . ,𝒗n in the
unit ball such that for all vertices i, j ∈ V,

1
k2

( ∑
(a,b)∈[k]2

∣∣∣Cov(Xia, Xjb)
∣∣∣)2 � 〈𝒗i,𝒗 j〉 �

1
k

∑
(a,b)∈[k]2

1
2 (

1
Var Xia

+ 1
Var Xjb

) Cov(Xia, Xjb)
2 .

With the equivalence between these notions
of correlations, it is easy to finish the argument
using Lemma 3.1. Specifically, Lemma 3.1
implies that if the variables are globally un-
correlated, then they are locally uncorrelated.
Therefore, after a small number of condition-
ings, the independent sampling of the variables
yields an assignment whose value is close to
that of the SDP solution.

6. Results for Unique Games

As mentioned earlier, in case the CSP is of
the Unique Games type, the threshold for the
eigenvalues does not need to depend on the
alphabet size k. The key technical step is the
following variant of Lemma 5.5:

Lemma 6.1. Let X1, . . . , Xn be r-local random
variables over [k] and let Xia be the indicator
of the event Xi = a. Suppose that the matrix(
Cov(Xia, Xjb)

)
i∈V, a∈[k] is positive semidefinite.

Then, there exists vectors 𝒗1, . . . ,𝒗n in the unit
ball such that for all vertices i, j ∈ V and
permutations π of [k],

( ∑
a∈[k]

∣∣∣Cov(Xia, Xj π(a))
∣∣∣)4 � 〈𝒗i,𝒗 j〉 �

∑
(a,b)∈[k]2

1
2 (

1
Var Xia

+ 1
Var Xjb

) Cov(Xia, Xjb)
2 .

In fact, for unique games we can also obtain
results when the threshold is a constant close
to 1 as opposed to close to zero, or equiv-
alently, only requiring that the Laplacian of
the constraint graph has few eigenvalues close
to 0. Formally, this is stated in the following
theorem:

Theorem 6.2. For every positive integer m,
there exists an algorithm running in time
nO(mk2) that given a unique games instance Γ

over alphabet [k] with value 1 − η, finds a
labelling satisfying 1 − O( η

λm
) fraction of the

edges. Here λm is the mth smallest eigenvalue
of the Laplacian of the constraint graph Γ.

The (omitted) proof follows similar lines to
the proof of Theorem 5.2, but is not identical.
In particular, at the moment our analysis re-
quires to use a variant of propagation rounding
where we enumerate over all possible seed
sets of a certain size rather than choosing a
random one. We can then use this to obtain a
subexponential algorithm for every instance of
Unique Games, thus proving Theorem 1.3. The
proof follows by combining Theorem 6.2 and
the decomposition theorem of [2] that showed
how to break up any graph into pieces of low
rank. The main observation is that one does not
need to use the decomposition first, and then
run the SDP on each part, but rather we can use
the decomposition in order to round the SDP
solution, by applying propagation rounding to
each part independently.

Conclusions

We have shown that nO(ε1/3) rounds of an
SDP hierarchy suffice for solving the Unique
Games problem on (1− ε)-satisfiable instances.
The best lower bound known for the hierarchy
we used is log logΩ(1) n [31], [22], and finding
the tight bound has obvious relevance to the
unique games conjecture.

It is our hope that the correlation based
rounding technique presented here, will yield
more approximation algorithms based on SDP
hierarchies. Indeed, Arora and Ge (personal
communication) recently used ideas from this
work to obtain improved algorithms for 3-
coloring on an interesting families of instances.
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